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Introduction
Since about 1998, the metabolome1 has come to 
be defined as a compendium of small molecules 
(< 1,000 Da) called metabolites that are either 
encoded by the host genome (endogenous) or 
introduced to the host (exogenous) through the 
diet, medication, or environmental exposures. 
Endogenous metabolites are essential for 
key physiologic functions,2 while exogenous 
metabolites may benefit or harm the host, 
depending on the compound and/or level of 
exposure.3 In this article, we discuss applications 
of metabolomics as a molecular profiling 
technology that provides a real-time snapshot 

of the metabolome and, hence, an individual’s 
physiologic status. The underlying technology 
combines analytical chemistry techniques – 
typically high-performance chromatography and 
mass spectrometry – and advanced statistical 
methods to study the metabolomic profile.

The metabolome is highly sensitive to internal 
and external variables, including age, gender, 
diet, geographical location, and genetics,4,5 
making metabolomic profiling a powerful tool for 
assessing an individual’s phenotype. The metabolic 
readout of the phenotype, “the metabotype,” 
is a vital tool for biomedical research, drug 
development, and precision medicine.6-9

To date, metabolomics has been used 
to diagnose and prognosticate disease,10-14 
guide clinical decision making,15-17 help shape 
preventative treatment strategies,18,19 and monitor 
overall health and wellness.20 Despite these 
contributions to precision medicine, adapting 
metabolomics-based diagnostic testing and 
follow-up monitoring into clinical practice is 
challenging due to the need for high performance 
liquid chromatography and mass spectrometry 
(HPLC/MS), which do not lend themselves to 
point-of-care. This highlights a critical need 
to establish and benchmark methods that 
enable cost effective access to metabolomics 
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for diagnosing and monitoring health within 
the boundaries of centralized technology. 
In this paper, we introduce a simple collection 
technology that can be used to generate results 
consistent with current collection-analysis 
approaches. We show that this simple collection 
technology establishes a robust baseline for 
subject sample evaluation.

The Value of Dried Blood Spots (DBS) as 
a Matrix for Metabolomics and Precision 
Diagnostic Applications
Protocols have been developed to profile 
metabolomes in serum, plasma, urine, and 
tissue.21-23 However, most of these matrices 
require cold chain storage to keep metabolites 
stable and are not amenable to self-collection. 
Dried blood spots (DBS) are routinely used as a 
simple, inexpensive, and non-invasive method to 
analyze blood components for medical diagnoses. 
DBS require only a fingerstick-sized volume that 
patients can usually collect themselves and can be 
shipped and stored at ambient temperature with 
reasonable assurance of stability.

Using DBS to profile the metabolome 
has gained traction in recent years, with 
several studies reporting satisfactory analytic 
performance and pathway coverage.24-27 
However, the utility of DBS to capture the 
global, longitudinal, biological, and pathological 
metabolic changes within each individual – a 
metric vital to precision medicine – has not 
been extensively investigated. The objective of 
this study was to evaluate the performance and 
characteristics of metabolomic profiles from 
a collection of DBS. Our findings provide the 
foundation for future studies aimed at establishing 
untargeted metabolomic profiling of DBS as 
a mainstream diagnostic testing modality for 
wellness and precision medicine initiatives.

Methods
Study Participant Characteristics
This IRB-approved study was open to all 
non-pregnant individuals 18-75 years old. 
Subjects were internally recruited at Metabolon 
by the study team and provided informed consent 
before participating. All health information was 
self-reported.

This study included 2 cohorts: 1) 49 self-
reported healthy donors; 25 males aged 27-69 and 
24 females aged 20-62, and 2) 22 donors; 10 males 
aged 38-61, 10 females aged 34-69, and 2 donors 
who did not report their age or gender.

Sample Collection
For matched comparisons between DBS and 
plasma, a phlebotomist collected one venous 

whole blood sample per individual into an EDTA 
tube according to Metabolon’s IRB-approved 
protocol. 50μl of each blood sample were 
spotted onto Whatman 903 Protein Saver Cards 

(Sigma Aldrich #WHA10534612). Plasma was 
isolated from the remaining sample then stored 
at -80°C. For longitudinal analyses each volunteer 
was asked to self-collect one DBS sample via 
fingerstick each weekday at their home for 
30 days and return them to Metabolon at the 
end of each week. All blood spots were dried 
at room temperature for 4 to 24 hours, sealed 
in gas-impermeable bags with desiccant, and 
stored at -20°C.

Sample Processing
Samples were processed according to validated 

Figure 1: Metabolite composition of DBS and plasma. (A) A breakdown of super pathways covered by 
metabolites that were recovered from < 70% (35/49) of plasma and DBS samples. (B) Agreement between the 
relative abundances of each biochemical detected in > 70% of matched DBS and plasma samples. (C) Correlation 
comparison between recovered metabolites by super pathway.
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methods with certain modifications made for 
DBS.28-30 Briefly, industry standard 2 x 6 mm 
punches were taken from each DBS and 
rehydrated by shaking with a small aliquot of 
water. Protein was precipitated by shaking with 
methanol on a SPEXC 2000 Geno/Grinder 
and centrifuging. For quality control (QC) 
purposes, several recovery standards were added 

to each sample before extraction. The extracted 
supernatants were divided into 4 aliquots then 
placed on a sample evaporator (SPE-Dry 96) 
to remove organic solvent. Dried extracts were 
stored overnight under nitrogen. Dry Whatman 
card punches (DBS blanks) were extracted using 
an identical method in every set to ensure curated 
biochemicals met a 3:1 signal-to-noise ratio. 

A DBS QC sample was extracted with 4 technical 
replicates in every set to monitor reproducibility.

Ultrahigh Performance Liquid 
Chromatography‑Tandem Mass 
Spectrometry (UPLC/MS‑MS)
Untargeted UPLC-MS/MS of known biochemicals 
was performed on samples extracted from DBS 
as described.28-30 All samples were subjected to 
four different chromatography methods. Each of 
the 4 aliquots of dried extracts were reconstituted 
in a solvent optimized for each method. 
Aliquot #1 was analyzed using acidic positive ion 
conditions optimized for hydrophilic compounds. 
The extract was gradient eluted from a C18 
column (Waters UPLC BEH C18-2.1 x 100mm, 
1.7um) using water and methanol containing 
0.05% perfluoropentanoic acid (PFPA) and 
0.1% formic acid (FA). Aliquot #2 was analyzed 
using acidic positive ion conditions optimized 
for hydrophobic compounds. The extract was 
gradient eluted from the same C18 column using 
methanol, acetonitrile, water, 0.5% PFPA and 
0.01% FA. Aliquot #3 was analyzed using basic 
negative ion-optimized conditions on a dedicated 
C18 column. The extract was eluted from the 
column with methanol, water, and 6.5 mM 
ammonium bicarbonate (pH 8.0). Aliquot #4 was 
analyzed using negative ionization after eluting 
from an HILIC column (Waters UPLC BEH 
Amide 2.1 x 150 mm, 1.7 um) using a gradient 
consisting of water and acetonitrile with 10mM 
ammonium formate (pH 10.8).

Compound Identification and Data Analysis
Compounds were identified by comparing 
the mass-to-charge (m/z), retention time, and 
associated fragmentation spectra in each sample 
to a library of standard chemical entities as 
described.28-31 Technical replicates of DBS QC 
samples were extracted in each 48 well plate 
and interspersed throughout the run to monitor 
the analytical variability of biochemicals. 
All sample sets met our acceptance criteria of 
< 10% relative standard deviation (RSD) for 
recovery standard variability and < 15% RSD for 
instrument variability. Raw “area under the curve” 
(AUC) values from samples were used to calculate 
the number of compounds quantified in each 
sample type. All values were log-transformed, 
then converted to z-scores using rankit regression 
to estimate the mean and standard deviation 
as described.32 This analysis determined how 
many standard deviations the raw intensity of 
a given metabolite rose above or fell below the 
mean intensity of that metabolite in a dataset. 
Analyses were conducted in R33 and Omicsoft 
Array Studio version 7.2.34

Figure 2: Agreement between fed/fasted signatures in DBS and plasma. (A) A graph plotting the fold 
changes for each metabolite shown in Table 2. (B,C) Plots of z‑scores showing the analytic agreement between 
individual donors, sample matrices, and mass spectrometers. Letters R, S, T, and V indicate four different 
mass‑spectrometry platforms used to analyze plasma samples. DBS samples were run on platform V.
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Results
Overview of Cohorts
For DBS verses plasma comparisons 49 self-
reported healthy volunteers were divided into 
“fed” and “fasted” groups that were distributed by 
age and sex (Table 1). The fed group ate ad libitum 
while the fasted group abstained from all food and 
liquid intake other than water for 8 hours before 
sample collection.

DBS used in longitudinal analyses were 
collected from 22 subjects. Of these 22 subjects, 
6 subjects reported no health issues, 14 subjects 
self-reported having at least one medical 
diagnosis, and 2 participants did not disclose 
their health status (Table 2). A general description 
of diet and log of medications taken on each 
study day by each study participant are shown in 
Supplemental Figures 1 and 2.

Metabolomic Profiles of Plasma and DBS
We characterized the global metabolomic profile 
captured in DBS punches and compared it to the 
profile in matched samples of plasma, a matrix 
routinely used for diagnostic testing for which 
the metabolome is well characterized.35 Plasma 
samples were analyzed on four identical mass 
spectrometry (MS) platforms, referred to as R, 
S, T and V; DBS was analyzed once, on platform 
V. To confirm acceptable precision and accuracy 
of the data we analyzed 40 technical replicates of 
plasma (10 per platform) and 8 replicates of DBS. 
Of the 984 total metabolites detected in plasma, 
854, 856, 859, and 842 were detected in all 10 

replicates for platforms R, S, T, and V, respectively. 
The median RSDs of these sample pools were 
9.6%, 7.6%, 8.7%, and 7.2% on platforms R, S, 
T, and V, respectively. A total of 861 metabolites 
were recovered from the DBS technical replicates. 
Of those, 604 were detected in all 8 replicates and 
had a median RSD of 8.8%. Observing a smaller 
number of metabolites in DBS than in plasma 
is not unusual or unexpected given the lower 
sample volume.

Having demonstrated acceptable RSDs in 
the technical replicates we analyzed the donor 
samples. As noted above, 984 and 861 metabolites 
were recovered from plasma (across 4 platforms) 
and DBS samples, respectively. Of the 861 
metabolites detected in total, 841 metabolites 
were detected in > 70% of plasma samples and 
586 metabolites were detected in > 70% of DBS 
samples. All (100%) of super pathways and 94% 
of sub-pathways represented in plasma were also 
represented in DBS (Figure 1A).

Across all four platforms, 482 metabolites were 
found in > 70% (35) of the 49 matched donor 
samples. For this group of 482 metabolites, we 
calculated the correlation coefficients (r values) 
between each plasma dataset and the DBS dataset. 
The correlations of the plasma to DBS were 0.76, 
0.74, 0.76, and 0.75 for platforms R,S,T, and V, 
respectively. The percentage of correlations that 
were at least 0.6 were 65%, 65%, 67%, and 66% for 
platforms R, S,T, and V, respectively (Figure 1B).

When averaged across all 4 platforms, 209 
(44%) metabolites showed strong correlation 
(> 0.8), 107 (22%) showed moderate correlation 
(0.8-0.6, 0.6 inclusive) and 166 metabolites 
had correlation below 0.6. When DBS and 
plasma were compared relative to pathway 
coverage (Figure 1C), xenobiotics and cofactors/
vitamins correlated strongest, with 87% and 
71% of metabolites showing r > 0.6, respectively. 
By contrast, energy and peptide pathways 
had the lowest correlation, with only 29% 
of energy and 33% of peptide biochemicals 
achieving an r > 0.6. The weaker correlation 
between these molecules is not surprising 
given that energy and peptide metabolites tend 
to be enriched in erythrocytes and absent in 
plasma. Overall, metabolites generally found 
in plasma had the highest correlation between 
sample types, while metabolites found exclusively 
in erythrocytes had the lowest correlation. 
Altogether, these data show that plasma and DBS 
have similar pathway coverage but each with 
distinct characteristics. 

Metabolomic Profiles of Fed 
and Fasted Individuals
Metabolomic profiles captured in DBS and 
plasma under “fed” and “fasted” conditions 
were compared. We used fasting as a point of 
comparison because it represents a clinical 
industry standard of collection with significant 
evidence showing stable, reproducible 
performance of small molecule diagnostics.36 
For statistical analysis of fed versus fasted, each 
metabolite was first re-scaled to have median=1, 
then imputed with its observed minimum, and 
finally the natural log-transformation was applied. 
For the plasma sets these computations were 
applied separately to each platform. Because of 
some of the imbalances of age and sex, an analysis 
of covariance (ANCOVA) was run with sex 
and log(age) as covariate. The fold changes for 
fasting status are based on the least-square means 
(LS MEANS) which are the means for the fed 
and fasted groups adjusted for the covariates. 
These analyses were performed in R version 
4.2.2,33 the R packages “car”37 and “emmeans” 
version 1.8.3.38

Table 1: Overview of the 49-donor cohort. This cohort consisted of 25 males aged 27‑69 (average age 42) 
and 24 females aged 20‑62 (average age 35). The fed group contained 12 males, aged 27‑59 (average age 43) 
and 14 females, aged 20‑62 (average age 35). The fasted group contained 13 males aged 23‑69 (average age 
41) and 10 females aged 27‑48 (average age 35).

Fed Fasted

Male Subject Age Female 
Subject Age Male Subject Age Female 

Subject Age

1 23 1 20 1 27 1 23

2 31 2 23 2 28 2 27

3 31 3 25 3 32 3 27

4 32 4 27 4 36 4 33

5 33 5 28 5 38 5 33

6 36 6 29 6 42 6 36

7 38 7 30 7 42 7 36

8 42 8 33 8 44 8 41

9 46 9 39 9 48 9 48

10 47 10 40 10 49 10 62

11 57 11 41 11 52

12 59 12 43 12 62

13 46 13 69

14 53

There was high correlation between the 
fed/fasted ratios of the log transformed data 
in each sample type (r=0.84), demonstrating 
that the majority of the metabolome in 
plasma was retained in DBS despite the 
differences in the testing matrices and DBS 
having a 5-fold lower extraction volume.
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To account for multiple comparisons, 
the false discovery rates were computed for 
each comparison using the q-value method 
of Storey and Tibshirani39 and implemented 
with the R package “qvalue” version 2.30.0.40 
After analyzing DBS and plasma from fed 
and fasted groups we further evalutated the 
metabolites that demonstrated a significant 
fold change (p<0.05) in response to fasting. 
The false discovery rates corresponding to 
the p<0.05 threshold were 9.5%, 7.7%, 8.6%, 
9.5%, and 24% for plasma, platforms, R, S, T, 
V, and DBS, respectively. We then focused on 
the plasma samples that were analyzed on the 
same platform as the DBS. To characterize 
the congruency of the metabolomes of DBS and 
plasma we plotted the fed/fasted fold-change 
ratios of the metabolites found in both 
sample matrices (Figure 2A). There was high 
correlation between the fed/fasted ratios of 
the log transformed data in each sample type 
(r=0.84), demonstrating that the majority of 
the metabolome in plasma was retained in DBS 
despite the differences in the testing matrices and 
DBS having a 5-fold lower extraction volume.

We also used glucose and 1,5-anhydroglucitol 
(1,5-AG) markers associated with both fasting 
and fed states, to measure variance in metabolite 
performance between individuals. We estimated 
the distribution range for glucose and 1,5-AG 
by calculating the deviation from the mean by 
computing the z-scores on the log-transformed 
data without imputes, using rankit regression 
to estimate the mean and standard deviation. 
Z scores for glucose and 1,5-AG for the 49 
subjects were computed independently for each 
matrix and then plotted (Figure 2 B,C). While Z 
scores varied between individuals – sometimes 
by as much as 10 standard deviations – the 
difference in Z scores between plasma and DBS 
for each individual was less than 1 standard 
deviation. Altogether, these data show that 
DBS captures global metabolomic changes 
associated with fasting that are fairly consistent 
with those observed in plasma, while also 
capturing variability among individuals within a 
testing group.

Longitudinal Precision and Biological 
Variability Captured in DBS
We next evaluated the metabolic variability 
captured by DBS for individuals over time. 
We profiled DBS samples from 22 volunteers. 
Of these volunteers, six subjects did not report any 
health issues.; the rest (16) self-reported diagnoses 
shown in Table 2. Each donor was asked to 
self-collect at least one DBS sample every weekday 
for up to 30 days. Some donors did not complete 

the full study, and some provided more than one 
sample on some of the study days. Our analysis 
included all data generated from metabolic 
profiling of all DBS submitted for the study.

Longitudinal tracking of selected metabolites
The relative abundance of most metabolites 
revealed global metabolic trends over time while 
also capturing the biological variability of each 
individual. Some metabolites that exemplify 
individual characteristics are shown in Figure 3. 
While many of these findings are from an n 
of 1 setting, the results from the study can be 
verified by the extensive personal information 
volunteers disclosed on their health history 
forms and daily logs. For example, Donor 2, 
who had been diagnosed with probable insulin 
resistance, had noticeably low levels of 1,5-AG, 
(Figure 3A) a marker of short-term glycemic 
control that decreases as blood glucose levels 

exceed the renal threshold for glucosuria.41 
This same donor demonstrated a relatively 
high level of ergothioneine (Figure 3B), a 
xenobiotic found mainly in mushrooms 
and beans, which aligned with the donor’s 
reported vegetable-rich diet. Donor 9, who 
had a history of hypothyroidism, exhibited low 
levels of DHEA-S (Figure 3C), an androgenic 
steroid that is typically decreased in patients 
with thyroid dysfunction.42,43 DHEA-S is also 
elevated in women with hyperandrogenism,44 
and Donor 2, who exhibited the highest levels 
of this metabolite in the cohort, had a history 
of polycystic ovary syndrome (PCOS). Donor 9 
was taking corticosteroids to treat asthma and 
had the lowest level of androstenediol (3beta, 
17beta) disulfate (Figure 3D), an androgenic 
steroid that can be potently downregulated in 
response to corticosteroid therapy Tryptophan 
betaine and N,N,N-trimethyl-5-aminovalerate 

Table 2: Overview of the 22-donor cohort. This cohort consisted of 10 males aged 38‑61 (average age 48), 
10 females aged 34‑69 (average age 46), and two adults of unknown age and sex. Each donor reported their 
medical diagnoses and the prescription medications they took during the study. While the number of DBS 
collected from each subject varied all data was included in the analyses. ADHD=attention deficit hyperactivity 
disorder, PCOS=polycystic ovary syndrome.

Subject 
Identifiter Sex Reported Medical History Prescription Medications

Number 
of DBS 

Collected

DNR19 M Asthma Zyrtec 30

DNR25 M Healthy None 30

DNR05 M Healthy None 23

DNR15 M Healthy None 25

DNR18 M History of Kidney Stones None 30

DNR13 M Hyperlipidemia, Hypercholesterolinemia None 31

DNR21 M Osteoarthritis, Hypercholesterolinemia None 27

DNR04 M ADHD, Hypothyroidism Vyvanse, Adderall, Synthroid 28

DNR26 M Insomnia, Bipolar Disorder, Type II 
Diabetes, Hypertension, Hypogonadism

Zestoretic, Synthroid, Depo‑Testosterone, 
Lamictal, Lipotor, Cymbalta, 
Abilify Maintena

10

DNR22 M Gastroesophigeal Reflux Disease None 30

DNR28 F Healthy None 20

DNR02 F ADHD, Reynauds Syndrome, Probable 
Insulin Resistance, PCOS, Migraines, 
Hypercholesterolinemia

Vyvanse, Adderall, Xanax 20

DNR16 F Hypothyroidism Synthroid 20

DNR27 F Healthy None 21

DNR01 F Anemia, Migraines Klonopin, Lexapro, Relpax 28

DNR06 F Asthma, Sleep Apnea, Depression, 
ADHD, Osteoarthritis, Gastroesophageal 
Reflux Disease

Adderall, Xopenex HFA, Wellbutrin SR, 
Kelnor 1/35

12

DNR10 F Migraines, PCOS None 19

DNR09 F Asthasma, ADHD, Hypothyroidism, 
Hypertension

Vyvanse, Strattera, Ritalin, Porair (Albuterol 
Inhaler), Zestoretic, Synthroid

23

DNR20 F Healthy None 26

DNR29 F Healthy None 5

DNR 11 Null Null Null 18

DNR 14 Null Null Null 7
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(Figure 3E and 3F) are intermediate molecules 
associated with tryptophan metabolism.

No obvious dietary, medical, or medicinal 
conditions were noted by the subjects that might 
have caused variability in abundance between 
individuals; and while our findings revealed 
differences between individuals, they also showed 
that levels remained consistent within each subject 
for the duration of the study. Of important note, 
this between-within contrast shows that biological 
individual-to-individual differences are exceeding 
the analytical variability associated with DBS 
analysis and home collection, showing that our 
findings represent the metabolic fingerprints of 
the study participants rather than analytical noise. 

We also note that the levels of some metabolites 
fluctuated considerably, both within an 
individual and across individuals over the study. 
Representative metabolites associated with amino 
acid metabolism (4-acetamidobutanoate), diet 
(dimethylglycine), and environmental factors 
(4-hydroxychlorothalonil and perfluorooctane 
sulfonic acid (PFOS)) are shown in Figure 4. 
The levels of the metabolite 4-acetaminobutanoate 
was highly consistent for some participants 
(e.g., Donors 2, 10, 15, and 29) but fluctuated 
dramatically for others, such as Donor 26. Some 
of the more extreme outliers could be explained 
by diet. For example, dimethylglycine is an amino 
acid found in many edible plants including beans 

and brown rice. Donor 20 reported eating these 
foods more often than other study participants.

The elevated PFOS level shown in Donor 5, 
a self-reported vegetarian, may indicate higher 
levels of exposure from food and/or lower 
clearance compared to the rest of the cohort 
since PFOS may be associated with pesticide 
metabolism to treat plants and vegetables. 
While conclusions about the causative factors for 
the observed biological variabilities cannot be 
drawn without further study, these data show that 
individual metabolic fingerprints can be observed 
at a singular time point from a DBS sample.

Altogether, these data show that DBS can 
capture biological variability between individuals 
to a high degree of precision and that the 
analytical variability with DBS is minor compared 
to the individual-to-individual differences 
associated with this cohort.

Longitudinal tracking of selected hormones
To further evaluate the ability of DBS as a 
modality for “metabolic fingerprinting” based 
on the global metabolome, we focused the 
analysis on hormone profiles of the 22-donor 
cohort to test whether we could identify the 
two individuals in the population that had 
a reported history of PCOS. Analysis of the 
biochemical profiles for each of the subjects 
revealed a specific steroid hormone profile in 
multiple subjects (Figure 5). The lowest levels 
of the steroid hormones across the cohort 
corresponded to male and post-menopausal 
female participants. Among pre-menopausal 
females who were not taking estrogen-based birth 
control we identified two with significantly lower 
levels of the progestin steroid 5alpha-pregnan-
3beta,20alpha-diol disulfate, a steroid sulfate 
that increases during ovulation and is known to 
be downregulated in PCOS.45 Given the small 
number of cases in this study, it is impossible 
to make any claims regarding the strength of 
this particular finding. Rather the preliminary 
evidence highlights the proof of concept for 
the ability of DBS samples to capture metabolic 
variability associated with specific biological 
function, including the female reproductive 
cycle. Based on these observations, we propose 
that DBS can be extended to disease diagnosis 
for related conditions.

Discussion
As noted throughout this article, significant 
advancement in the performance of analytical 
platforms and informatics tools enable the 
measurement of thousands of metabolites 
in a variety of biofluids and tissues.46,47 
These analytical tools have provided insights 

Figure 3: Individual biological variability and longitudinal precision captured by DBS. (A-F) The relative 
abundances of representative metabolites were plotted over the 30‑day study period. Subject DNR25 was healthy, 
while subjects DNR01, 02, 09, and 21 had been diagnosed with various conditions and were being treated with 
prescription medications listed in Table 2.
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on mechanisms that underly numerous diseases 
including neuropsychiatric disorders,48,49 
cardiovascular disease,50,51 cancer,52,53 and 
diabetes.54 Metabolomics may also inform a 
patient’s prognosis and response to treatment.55-59 
Continued use of metabolomics-based testing 
will define deviations in global metabolic 
pathways from healthy reference populations in 
clinically stratified cohorts. Information from 
these reference studies will become the baseline 
for discovery and validation of prognostic and 
diagnostic biomarkers of wellness or disease 

activity, enable sub-classification of disease, and 
serve as a tool for monitoring disease activity, 
recurrence, and/or response to treatment.

DBS represents an optimal solution for 
expanding access to metabolomics for monitoring 
wellness owing to their easy collection, low-cost 
shipping and storage, and lack of reliance on 
cold-chain and phlebotomy services. Several 
studies have demonstrated the utility of DBS 
in metabolomics-based diagnostic testing,60-62 
however the performance of DBS samples for 
broad metabolic fingerprinting and assessing 

overall wellness has not been rigorously tested. 
Here, we aimed to establish a protocol for DBS 
collection and to compare the metabolomic 
profiles from plasma samples (which are routinely 
used for clinical testing) to profiles obtained from 
DBS. The overarching goal was to demonstrate the 
utility and value of DBS for evaluating the global 
metabotype of individual patients.

Using Metabolon’s untargeted discovery 
mass spectrometry platform, we captured a 
comprehensive metabolomic profile from DBS 
samples and assessed the metabolite variability 

Figure 5: Analysis of steroid hormone levels for each donor over the 30-day study. Decreased levels of a steroid hormone revealed two study participants who had a 
history of PCOS: blue circles shown in “No Hormone” and purple squares shown in “Estrogen‑free IUD”.

Figure 4: Representative metabolites showing individual metabolic fingerprints across the cohort. The box plots represent all data for each biochemical and each 
donor across the entire data set. The box represents 80% of the data and the whickers represent the top and bottom 10% of the data. The line in the middle of the boxes 
represents the median level for that donor. (A) Levels of a metabolite associated with amino acid metabolism that was shown to have a wide range of individual variability. 
(B) Levels of a metabolite derivative of the amino acid glycine that is found mainly in beans and liver. (C-D) Levels of metabolites associated with pesticide metabolism. 
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across individuals under conditions of feeding 
and fasting. We showed that DBS captured a 
metabolic profile similar to that of plasma with 
the exception of metabolites that are enriched 
in erythrocytes (Figure 1). DBS also captured 
physiologic signature changes associated with 
fasting (Figure 2A). While these changes varied 
significantly between individuals, there was a high 
agreement between plasma and DBS signatures 
within individuals (Figure 2B,C), indicating 
that DBS captured biological variability with 
high fidelity.

We assessed longitudinal precision and 
biological variability by analyzing DBS collected 
at home over 30 days. DBS captured stable 
and broad metabolic variability between study 
participants and metabolites per individual for 
the study period (Figure 3). This data agrees 
with established concepts regarding tight control 
of levels of certain metabolites in the blood, 
while also revealing that the DBS methodology 
is capable of monitoring this level of biological 
precision. There were also examples of metabolic 
signature differences that could be explained 
by dietary, medicinal, or environmental factors 
unique to those individuals, where metabolites 
had both greater individual-to-individual 
differences but also greater variability in how 
tightly maintained those metabolites were per 
individual (Figure 4). Finally, we demonstrated 
that the individual variability captured in the 
DBS metabolome can potentially inform disease 
activity (Figure 5).

Altogether, these data demonstrate that 
samples generated from DBS can provide 
accurate and precise monitoring of metabolomic 
profiles and valuable insights on the alterations 
in the underlying biology of the individual. 
These findings support the assertion that DBS is 
a suitable matrix for profiling the metabotype. 
We recognize the limits of a small population 
study as a proof of concept and recognize that 
additional testing must be done with larger 
cohorts to confirm and validate our findings. 
We also note that plasma remains the gold 
standard for clinical diagnostics, and at present, 
should be used when a clinical diagnosis needs 
to be validated. Given that point, our findings 
show that in situations when cold storage or 
phlebotomy is not feasible, DBS represent 
a viable alternative matrix for profiling the 
metabotype and should therefore be further 
evaluated for metabolomics-based wellness 
testing as a potential testing modality within 
clinical standard of care. Further, we propose that 
metabolomic profiling with DBS will increase the 
affordability, diversity, and access for precision 
medicine applications. PMQ
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Summary Points
1.  Metabolomics has become a valuable tool for precision medicine initiatives 

but remains inaccessible for routine diagnostic testing because metabolomics 
technologies do not lend themselves to ease of access or affordability.

2.  Dried blood spot (DBS) collection is an ideal method for expanding access to  
metabolomics owing to easy collection and low-cost shipping and storage.

3.  The metabolomics profile captured by DBS is consistently similar to that of plasma.

4.  DBS captures universal metabolomic changes associated with fasting while also  
capturing the metabolic fingerprint of individuals within a cohort.

5.  DBS samples have the ability to capture metabolic variability associated with  specific 
biological functions, including the female reproductive cycle, that can be  extended 
to disease diagnosis.

6.  Our proof-of-concept findings show that DBS is a suitable sample matrix for  
untargeted, global metabolomic profiling of individuals.
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Supplemental Figure 1: Diet Summary

Donor 
ID Animal Protein Plant Protein

Refined 
Carbohydrates Vegetables Fruit Dairy Added Fats Sweets

DNR 1 Chicken, beef, fish All vegetables All fruits Soft cheeses Chocolate

DNR 2 Salmon, chicken, 
pork

Vega protein shake, 
almonds, edamame

Cruciferous, 
spinach, peppers

None Coconut oil. Flax 
milk

Dark chocolate

DNR 4 Chicken, eggs, beef Protein bars Low carb tortilla, 
noodles, sweet 
potatoes

Green beans, salad, 
tomato sauce, 
sprouts

All fruits Whey protein, 
yogurt, cheese

Mayonnaise Nutella, m&ms, 
soda

DNR 5 None Beans, almonds, 
hummus

Pasta. rice. 
Sandwich bread

Salad, tomato 
sauce, green beans, 
peas, pepper, 
carrot, radish

Apples Yogurt, cheddar 
cheese

Pop‑tarts

DNR 6 Did not report

DNR 9 Chicken, steak, 
eggs

Pasta, granola bar, 
potato chips

Salad, green 
vegetables, corn, 
salsa

Strawberries and 
raspberries

Ice cream

DNR 10 Poultry, beef, eggs Pasta, wheat 
crackers

All vegetables All fuits Yogurt, cheese Diet soda

DNR 11 Did not report

DNR 13 Chicken Cereal (Special K), 
sandwich bread, 
pizza, chips

All vegetables Bananas Yogurt, cheese Ice cream

DNR 14 Did not report

DNR 15 Did not report

DNR 16 Chicken Lentils, chickpeas Curry rice, bread, 
cheeze its

All vegetables All fruits Cheese, yogurt

DNR 18 Chicken, beef 
(ground and jerkey)

Peanut butter, 
beans

Pasta, bread, 
crackers, rice, taco 
shell

All vegetables All fruits Cheese, yogurt Butter. EVOOm 
pesto

DNR 19 Chicken, eggs, 
grass‑fed beef

Peanuts, almonds, 
sunflower seeds, 
protein noodles, 
whey protein 
(power, bar)

Brown rice All vegetables All fruits (raw and 
(dried), Lara bar

Cheese, whey 
protein

Dried fruit, honey

DNR 20 Did not report

DNR 21 Salmon, chicken, 
pork, beef, eggs

Nuts Popcorn Green vegetables Blueberries, apples, 
plums

Yogurt, cheese MCT oil, butter Dark chocolate

DNR 22 Eggs, all meat Pumpkin seeds Ramen All vegetables None None Candy, pop‑tarts, 
soda

DNR 25 Chicken Protein chake, 
Rx bar

Cereal (Heritage 
Grain)

Salad None Whey protein Salad dressing

DNR 26 Ham, beef Peanut Butter Potatoes, bread Broccoli, peas Bananas Yogurt, cheese

DNR 27 Chicken Kefir Pasta Salad Yogurt, kefir

DR 28 Chicken Pizza, whole wheat 
toast, chips

Salad Bananas Yogurt
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Supplemental Figure 2: Daily Drug Log

Day

Donor ID

DNR 1 DNR 2 DNR 4 DNR 5 DNR 6 DNR 9 DNR 10

1 Lexapro, 
Hydrocortisone

 Vyvanse, Adderall, Benadryl Synthroid, Aspirin, Trazodone None 
Reported

Adderall, Xopenex HFA, Zyrtec, 
Wellbutrin SR, Kelnor 1/35

Vyvanse, Strattera, Ritalin, 
Flonase, Zestoretic, Synthroid

2 Lexapro Vyvanse, Adderall, Benadryl Synthroid, Aspirin, Trazodone Adderall, Xopenex HFA, Zyrtec, 
Wellbutrin SR, Kelnor 1/35

Vyvanse, Strattera, Ritalin, 
Flonase, Zestoretic, Synthroid

Ibuprofen

3 Lexapro Vyvanse, Adderall, Benadryl Synthroid, Aspirin, Trazodone Adderall, Xopenex HFA, Zyrtec, 
Wellbutrin SR, Kelnor 1/35

Vyvanse, Strattera, Proair, 
Zestoretic, Synthroid

4 Lexapro, 
Ibuprofen

Vyvanse, Adderall, Benadryl Synthroid, Aspirin, Trazodone Adderall, Xopenex HFA, Zyrtec, 
Wellbutrin SR, Kelnor 1/35

Vyvanse, Strattera, Zestoretic, 
Synthroid

5 Lexapro, 
Hydrocortisone

Vyvanse, Adderall Synthroid, Aspirin, Trazodone Adderall, Xopenex HFA, Zyrtec, 
Wellbutrin SR, Kelnor 1/35

Vyvanse, Strattera, Zestoretic, 
Synthroid

Ibuprofen

6 Lexapro Synthroid, Aspirin, Trazodone

7 Lexapro, Relpax, 
Ibuprofen

Synthroid, Aspirin, Trazodone

8 Lexapro Vyvanse, Adderall, Benadryl Synthroid, Trazodone Strattera, Ritalin, Zestoretic, 
Synthroid

Ibuprofen

9 Lexapro Vyvanse, Adderall, Benadryl Adderall, Synthoid, Econazole 
nitrate, Miconazole nitrate, 

Clotrimazole, Trazodone

Strattera, Ritalin, Zestoretic, 
Synthroid

Ibuprofen

10 Lexapro Vyvanse, Adderall, Benadryl, 
Melatonin

Adderall, Synthoid, Econazole 
nitrate, Miconazole nitrate, 

Clotrimazole, Trazodone

Strattera, Ritalin, Zestoretic, 
Synthroid

Prilosec

11 Lexapro Vyvanse, Adderall, Benadryl, 
Melatonin

Adderall, Synthoid, Econazole 
nitrate, Miconazole nitrate, 

Clotrimazole, Trazodone

Strattera, Ritalin, Zestoretic, 
Synthroid

Prilosec

12 Lexapro Vyvanse, Adderall, Benadryl, 
Melatonin

Adderall, Synthoid, Econazole 
nitrate, Miconazole nitrate, 

Clotrimazole, Trazodone

Vyvanse, Strattera, Zestoretic, 
Synthroid

Prilosec, 
Claritin

13 Lexapro Adderall, Synthoid, Econazole 
nitrate, Miconazole nitrate, 

Clotrimazole, Trazodone

Prilosec, 
Claritin

14 Lexapro Adderall, Synthoid, Econazole 
nitrate, Miconazole nitrate, 

Clotrimazole, Trazodone

15 Lexapro Vyvanse, Adderall, Benadryl, 
Melatonin

Vyvanse, Synthoid, 
Clotrimazole, Trazodone

Adderall, Xopenex HFA, Zyrtec, 
Wellbutrin SR, Kelnor 1/35

Strattera, Ritalin, Zestoretic, 
Synthroid

Prilosec, 
Claritin

16 Lexapro Vyvanse, Adderall, Benadryl Vyvanse, Synthoid, 
Clotrimazole, Trazodone

Adderall, Xopenex HFA, Zyrtec, 
Wellbutrin SR, Kelnor 1/35

Strattera, Ritalin, Zestoretic, 
Synthroid

Prilosec, 
Claritin

17 Lexapro, 
Clonopin, Xanax

Vyvanse, Adderall, Xanax, 
Benadryl

Vyvanse, Synthoid, Trazodone Adderall, Xopenex HFA, Zyrtec, 
Wellbutrin SR, Kelnor 1/35

Strattera, Ritalin, Zestoretic, 
Synthroid

Prilosec, 
Claritin

18 Lexapro Vyvanse, Adderall, Xanax Synthoid, Trazodone Adderall, Xopenex HFA, Zyrtec, 
Wellbutrin SR, Kelnor 1/35

Strattera, Ritalin, Zestoretic, 
Synthroid

19 Lexapro Vyvanse, Adderall, Xanax, 
Benadryl

Synthoid, Trazodone Adderall, Xopenex HFA, Zyrtec, 
Wellbutrin SR, Kelnor 1/35

Strattera, Ritalin, Zestoretic, 
Synthroid

20 Lexapro Synthoid, Trazodone

21 Lexapro, Relpax, 
Ibuprofen

Synthoid, Trazodone

22 Lexapro Vyvanse, Adderall, Xanax, 
Benadryl

Vyvanse, Trazodone Vyvase, Strattera, Zestoretic, 
Synthroid

Prilosec, 
Ibuprofen

23 Lexapro, Relpax, 
Ibuprofen

Vyvanse, Adderall, Benadryl, 
Melatonin

Vyvanse, Synthoid, Aspirin, 
Trazodone

Adderall, Xopenex HFA, Zyrtec, 
Wellbutrin SR, Kelnor 1/35

Vyvase, Strattera, Zestoretic, 
Synthroid

 Prilosec

24 Lexapro Vyvanse, Adderall, Benadryl, 
Melatonin

Vyvanse, Synthoid, Aspirin, 
Trazodone

Adderall, Xopenex HFA, Zyrtec, 
Wellbutrin SR, Kelnor 1/35

Vyvase, Strattera, Zestoretic, 
Synthroid

Prilosec

25 Lexapro Vyvanse, Adderall, Benadryl, 
Melatonin

Vyvanse, Synthoid, Aspirin, 
Trazodone

Vyvase, Strattera, Zestoretic, 
Synthroid

Prilosec

26 Lexapro, 
Ibuprofen

Vyvanse, Adderall, Xanax, 
Benadryl, Melatonin

Vyvanse, Synthoid, Aspirin, 
Trazodone

Prilosec

27 Lexapro Vyvanse, Synthoid, Aspirin, 
Trazodone

28 Lexapro Vyvanse, Synthoid, Aspirin, 
Trazodone

Vyvase, Strattera, Zestoretic, 
Synthroid

29 Vyvase, Strattera, Zestoretic, 
Synthroid

30 Vyvase, Strattera, Zestoretic, 
Synthroid

continues...
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Supplemental Figure 2: Daily Drug Log (continued)

Day

Donor ID

DNR 11 DNR 13 DNR 14 DNR 15 DNR 16 DNR 18 DNR 19

1 None reported None reported None reported Synthroid None reported Zyrtec

2 Synthroid Zyrtec

3 Synthroid Zyrtec

4 Synthroid Zyrtec

5 Ibuprofen Synthroid Zyrtec

6 Ibuprofen Zyrtec

7 Zyrtec

8 Synthroid Zyrtec

9 Synthroid Zyrtec

10 Synthroid Zyrtec

11 Synthroid Zyrtec

12 Synthroid Zyrtec

13 Zyrtec

14 Zyrtec

15 Synthroid Zyrtec

16 Synthroid Zyrtec

17 Synthroid Zyrtec

18 Synthroid Zyrtec

19 Synthroid Zyrtec

20 Zyrtec

21 Zyrtec

22 Synthroid Zyrtec

23 Synthroid Zyrtec

24 Synthroid Zyrtec

25 Synthroid Zyrtec

26 Synthroid Zyrtec

27 Zyrtec

28 Zyrtec

29

30

continues...
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Supplemental Figure 2: Daily Drug Log (continued)

Day

Donor ID

DNR 20 DNR 21 DNR 22 DNR 25 DNR 26 DNR 27 DNR 28

1 Synthroid Prilosec Ibuprofen Synthroid, Relpax Lexapro, Hydrocortisone

2 Synthroid Prilosec Synthroid, Relpax

3 Synthroid Prilosec Synthroid, Relpax

4 Synthroid Prilosec Synthroid, Relpax

5 Synthroid Prilosec Synthroid, Relpax

6 Synthroid Prilosec

7 Synthroid Prilosec

8 Synthroid Prilosec Synthroid, Relpax

9 Synthroid Prilosec Synthroid, Relpax Ibuprofen

10 Synthroid Prilosec Zyrtec Synthroid, Relpax Ibuprofen

11 Synthroid Prilosec Zyrtec Synthroid, Relpax Ibuprofen

12 Synthroid Prilosec Synthroid, Relpax

13 Synthroid Prilosec

14 Synthroid Prilosec

15 Synthroid Prilosec, Ibuprofen Ibuprofen

16 Synthroid Prilosec

17 Synthroid Prilosec, Ibuprofen

18 Synthroid Prilosec, Ibuprofen Zyrtec

19 Synthroid Prilosec

20 Synthroid Prilosec, Ibuprofen

21 Synthroid Prilosec, Ibuprofen

22 Ibuprofen Synthroid Prilosec

23 Synthroid Prilosec Ibuprofen Ibuprofen

24 Synthroid Prilosec, Ibuprofen

25 Synthroid Prilosec Ibuprofen

26 Synthroid Prilosec

27 Synthroid Prilosec Zyrtec

28 Synthroid Prilosec Zyrtec

29 Synthroid Prilosec, Ibuprofen Zyrtec

30 Prilosec Zyrtec


